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Texts 
 
There are actually not many books on dynamic programming methods in economics.  The 
following are standard references: 
 
Stokey,  N.L. and Lucas, R.E. (1989) Recursive Methods in Economic Dynamics. (Harvard 
University Press) 
 
Sargent, T.J. (1987) Dynamic Macroeconomic Theory (Harvard University Press) 
 
Sargent, T.J. (1997) Recursive Macroeconomic Theory (unpublished, but on Sargent's 
website at http://riffle.stanford.edu) 
 
Stokey and Lucas does more the formal "mathy" part of it, with few worked-through 
applications.  In contrast, Sargent's books are excellent because they have a lot of relatively 
simple and interesting applications to macroeconomic theory.  Here, we draw a lot of our 
examples from Sargent (1987). 
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(1) Some Basic Intuition in Finite Horizons 
 
 
(A) Optimal Control vs. Dynamic Programming 
 
The method of dynamic programming is analagous, but different from optimal control in that 
optimal control uses continuous time while dynamic programming uses discrete time.  Recall 
the general set-up of an optimal control model (we take the Cass-Koopmans growth model 
as an example): 
 
 max  u(c(t))e-rtdt 
 
 s.t. 
  dk/dt = (k(t)) - c(t) - nk 
 
plus initial and transversality conditions of some sort.  Thus, we are trying to find paths for 
control and state variables that maximize a continuous, discounted stream of utility over 
time. We find this path by setting up the current-value Hamiltonian (dropping time 
subscripts): 
 
 H = u(c) + ((k) - c - nk) 
 
where  is the co-state variable.  Solving this using the first order conditions for a 
Hamiltonian which, after some math, yields us a set of differential equations for dk/t and 
dc/dt and, when, solved, yield us the optimal paths {c(t)*, k(t)*}. 
 
In "dynamic programming", we have a different story.  Here, we use discrete time rather 
than continuous time.  So, instead of maximizing the integral of a continuous utility over 
time, we maximize the sum of discrete utilities over time.  Also, our constraint is no longer a 
differential equation (as in optimal control) but rather a difference equation.  So our problem 
looks something like: 
 
 max 

t=0
  tu(ct) 

 
  s.t. 
  kt+1 = (kt) - ct 
 
or some version thereof.  t is the discrete time discount factor (discrete time analogue of e-rt 
in continuous time).  How do we solve this?  We can't use Hamiltonians here, our workhorse 
for the optimal control problem.  We must use something else - namely, the value function.   
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(B) The Finite Case: Value Functions and the Euler Equation 
 
Let us follow the basic intuition of a 12-year-old: imagine a path over time  that starts at t = 0 
and ends at t = T.  Let us divide time up into T units of time, where a particular unit of time 
is denoted "t".   
 
Let us concentrate on this single unit of time (t) and ignore all the other time periods - so 
that, for the moment, we are thinking of a static problem.  We begin with a given amount of 
capital, kt.  Now, we wish to give this capital stock kt some "value", which we write V(kt).  
But what sort of "value" ought we to assign to it?  One possibility is the amount of utility we 
get out of that capital.  However, as capital yields no utility directly, the value of the capital 
stock must be considered differently - perhaps, we may suspect, as the maximum amount of 
utility we obtain from that capital stock once we've converted it to output and consumed it.   
We know output is derived from capital, so (kt) is the output we obtain from kt.  So, we 
would like to write something like V(kt) = max u(ct) s.t. c  (kt),  i.e. the value of the capital 
stock kt at t is the maximum utility we obtain from consuming the output made with that 
capital.   If we assume preferences are monotonic, etc., then all output is consumed and thus 
the constraint holds with equality so that V(kt) = u((kt)). 
 
Note that so far,  there is "no future" and thus this is a static problem.   However, suppose 
now there is a future, i.e. some t+1.  Suppose that capital tomorrow (kt+1) must be 
constructed (or rather saved) from output today ((kt)).  In this case, consumption is 
restricted to the unsaved output, i.e. ct  (kt) - kt+1.  Assuming this holds with equality, then: 
 
 V(kt) = max u(ct) = max u((kt) - kt+1) 
 
This is still the same problem in essence: we seek to choose the consumption level such that 
we obtain the maximum amount of utility possible from that intial stock of capital kt.  Recall 
that kt is given and thus, by extension, (kt) is given.  However, kt+1, the capital we build for 
tomorrow, is not exogenously given but it is an item of choice. Note also that we can 
increase ct by decreasing kt+1.  Thus, our "control" over ct translates into "control" over kt+1.  
So, by this simple manipulation, we've switched our "control" variable from ct to kt+1.  One 
should easily see that these controls are in fact the same: regardless of which control we 
decide to employ to maximize utility, we should obtain the same result. 
 
However, if there is no use for capital in the future, then optimally speaking, kt+1 = 0.  Thus, 
the value of capital kt becomes V(kt) = u((kt)), i.e. we consume all output.  This akin to a 
"final period" solution.   But now suppose that future capital kt+1 has some use.  Of what use 
is it?  Well, we already have a term for "usefulness" of present capital - we called it V(kt).  
So, tentatively, the "usefulness" of future capital we can simply call V(kt+1).   So our original 
value function ought to change to something like: 
 
 V(kt) = max {u(ct) + V(kt+1)} 
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as we now have utility gains from future capital.  So, the gain of "present" capital is not only 
how much utility we get from converting some of it to output and consuming that but also 
the utility we get tomorrow from not consuming all of present capital now but rather saving 
some for the future period.    
 
But we've gotten into a little tangle.  V(kt) is the value, at the present time t, of current 
capital, whereas V(kt+1) is the value, at the present time t, of future capital.  Thus, 
subscripting the value functions by t, we have Vt(kt) and Vt(kt+1).  But these value functions 
ought not to be comparable as they are considering two wholly different things (present 
capital versus future capital).  Thus, to make the value functions comparable, we should 
make Vt(kt+1) = Vt+1(kt+1).  Thus, the present value of future capital is the discounted future 
value of future capital, where Vt+1(kt+1) is thus analogous, logically, to Vt(kt) - albeit iterated 
one period ahead.  Thus, our value function ought properly to be: 
 
 Vt(kt) = max {u(ct) + Vt+1(kt+1)}      (VF) 
 
Wonderful, isn't it?  What is double wonderful is that we already have a term for kt+1, namely 
the difference equation itself, i.e. kt+1 = (kt) - ct.  If we wanted, we could plug that in to 
obtain: 
 
 Vt(kt) = max {u(ct) + Vt+1[(kt) - ct]}    
 
and, abracadabra, that's the value of present capital. (alternatively, we could have used 
inverted the transition function and used kt+1 as our control). 
 
How do we maximize the value of present capital?  If differentiable, we can use the simple 
Lagrangian method: obtain the first order condition by taking the derivative of this term with 
respect to the control (in this case, ct).   Thus, the first order condition is: 
 
 dVt(kt)   =  dU    +   [dVt+1 · dkt+1] = 0     (FOC) 
 dct               dct              dkt+1   dct 
 
a fairly obvious result. As we ostensibly know the functional form of U(.), we can easily get 
dU/dct; and we know dkt+1/dct = -1, from the difference equation, then we can write the FOC 
as: 
 
 dU/dct =  [dVt+1/dkt+1] 
 
Thus, this claims that we will adjust consumption today until the marginal utility of present 
consumption equals its marginal disutility - the latter being measured by the (discounted) 
utility foregone tomorrow by reducing future capital (i.e. savings) by a unit.   
 
But we are not quite finished as we still don't know what dV/dkt+1 is. (not knowing the value 
function is one of the major problems in all applications of dynamic programming).  
However, the following trick can be used - the "Benveniste-Scheinkman" (B-S) condition.  
Namely, take the derivative of Vt(kt) with respect to the state, kt.  Then: 
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 dVt(kt)   =   [dVt+1 · dkt+1]      (BS) 
 dkt                   dkt+1   dkt 
 
Now, dkt+1/dkt = (kt), i.e. the marginal product of capital.   Thus: 
 
 dVt/dkt = (dVt+1/dkt+1)·(kt) 
 
Now, recall that the FOC claimed that dU/dct = (dVt+1/dkt+1).  Thus, plugging in: 
 
 dVt/dkt = (dU/dct)·(kt) 
 
iterating everything one period forward: 
 
 dVt+1/dkt+1 = (dU/dct+1)·(kt+1) 
 
et voila!  We have an expression for dVt+1/dkt+1, which we can plug into our FOC, which 
will yield: 
 
 dU/dct =  (dU/dct+1)·(kt+1) 
 
or, recognizing that kt+1 = (kt) - kt, then: 
 
 dU/dct =  (dU/dct+1)·((kt) + kt) 
 
which one ought to recognize as the discrete version of the "Euler Equation", so familiar in 
dynamic optimization and macroeconomics.    
 
To see the Euler Equation more clearly,  perhaps we should take a more familiar example.  
Consider, for simplicity, an intertemporal "consumption-savings" model which can be 
expressed as: 
 
 max 

t=0
  tu(ct) 

 
  s.t. 
  xt+1 = R(xt - ct)  
  x0 given 
 
where ct is consumption, which is deducted from "non-human" wealth or assets, xt.   
Whatever is left over is saved into assets xt+1 for the future, which receive a constant return R 
= (1+r).  Thus, consumption (ct) is the control and xt is the state.  The value function at t is: 
 
 Vt(xt) = max {u(ct) + Vt+1(xt+1)}     (VF) 
 
taking the first order condition: 
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 dVt(xt)   =  dU    +   [dVt+1 · dxt+1] = 0    (FOC) 
 dct               dct              dxt+1   dct 
 
or, as xt+1 = R(xt - ct), then dxt+1/dct = -R, so the FOC becomes: 
 
 dU/dct =  R[dVt+1/dxt+1] 
 
As we do not know what dV/dxt+1 is, then we need the Benveniste-Scheinkman (BS) 
condition.  Taking the derivative of Vt(xt) with respect to the state, xt: 
 
 dVt(xt)   =   [dVt+1 · dxt+1]      (BS) 
 dxt                   dxt+1   dxt 
 
or, as dxt+1/dxt = R: 
 
 dVt/dkt = R(dVt+1/dxt+1) 
 
Now, as the FOC claimed that dU/dct = R(dVt+1/dxt+1), then this becomes: 
 
 dVt/dxt = dU/dct 
 
or iterating one period forward: 
 
 dVt+1/dxt+1 = dU/dct+1 
 
and plugging this back into the FOC, we obtain: 
 
 dU/dct =  R(dU/dct+1) 
 
a far more familiar Euler Equation. 
 
How does this Euler Equation help us?  If we gave it an explicit functional form, we could 
say something about the relationship between ct+1 and ct - which might be informative.  After 
all, the Euler Equation is a difference equation itself - which could be solved for on optimal 
path {ct*}  if we had an initial condition on c0.  But we do not have this initial condition.  
Our sole initial condition is x0 - and x does not enter this equation explicitly.   The solution to 
the optimal path must be derived with some additional machinery.   
 
One way would be if we could derive a set of "policy functions".  A "policy function" ht(.) 
relates the control variable at period t with the contemporaneous state variable at period t, i.e. 
a function  ct* = ht(xt).  In the finite horizon case, policy functions are different for different 
periods.  The advantage of  getting a policy function is that then we could plug these into our 
Euler Equation instead of the controls.  Thus, if we could find ct* = ht(xt) and ct+1* = 
ht+1(xt+1), then our Euler becomes: 
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 dU/d(ht(xt)) =  R(dU/d(ht+1(xt+1)) 
 
As we have an initial x0, we this becomes a solvable difference equation.   However, we 
rarely, if ever, can derive the policy function so easily from FOC.  However, in the finite 
horizon case, another method of solution is available - namely, that of backward recursion.   
 
(C) The Recursive Solution 
 
How does one go about solving for {ct*} from the Euler Equation?  The simplest procedure, 
in a finite horizon, is backwards recursion.  Here is where the magic of the "recursive" 
structure really comes in.  Firstly, the term recursive means that we have a system of 
equations which "fit" into one another sequentially.  For instance, consider the two 
equations, y = (x) and z = f(y) - then starting with x, we get y from the first equation, plug 
into the second equation and then obtain z.  That's a recursive system. 
 
Well, the value function derived earlier is merely a method of solution for a recursive 
system.  The general idea can be thought of this way.  Consider the Solowian model again.  
Suppose you have a finite time path, broken up into T time periods (beginning at 0 ending at 
T) which are of length t each.  Now, look at the final time period, T, which we begin with a 
given amount of capital, kT.  The value function is:  
 
 VT(kT) = max {u(cT)}   s.t.  (kT) - cT  0 
                  cT 
 
where the term VT+1(kT+1) is omitted the time period T+1 does not exist - thus no future 
value for any capital created today.  This is akin to our earlier one-period static problem 
which is simply solved: cT

*, the optimal consumption in the final period will be exactly the 
entire output, i.e. cT

* = (kT), the output produced from the capital stock we began the final 
period T with.   Thus, VT(kT) = max {u(cT)} = u(cT*) = u((kT)) 
 
But now let's go back a step.  Let's go the "next-to-last" period, i.e. period T-1.  Here we 
have a value function that looks like: 
 
 VT-1(kT-1) = max {u(cT-1) + VT(kT)} s.t.   kT = (kT-1) - cT-1     
                      cT-1 
 
since T, the final period, is a "future" which exists.  We could proceed to solve it - but recall 
that we have already solved VT(kT) = u(cT*).  We could just plug that back in so that the 
value function becomes: 
 
 
 VT-1(kT-1) = max {u(cT-1) + u(cT

*)} 
                    cT-1     
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where now we are facing a one-period problem: finding the cT-1 that maximizes utility in 
period T-1 while at the same time providing the capital necessary to achieve cT

* in the final 
period.  So, cT

* enters here as a "constraint" upon the values cT-1 can take.   Thus, 
maximizing this one-period problem, we obtain some solution cT-1*.   Plugging this in, we 
have: 
 
 VT-1(kT-1) = u(cT-1

*) + u(cT
*)     

 
Now, let us turn to the previous period, i.e. T-2.  Here we face the value function: 
 
 VT-2(kT-2) = max {u(cT-2) + VT-1(kT-1)}  s.t. kT-1 = (kT-2) - cT-2  
                     cT-2 

 

here VT-1(kT-1) is now the value of our "future" capital next period - which we have already 
solved before.  Thus, plugging that in, we obtain:  
 
 V(kT-2) = max {u(cT-2) + [u(cT-1

*) + u(cT
*)]}     

 
or simply: 
 
 V(kT-2) = max {u(cT-2) + u(cT-1

*) + 2u(cT
*)}     

 
so, once again, we have a one-period problem - with cT-1

* and cT
* already given and known 

and thus acting as constraints on the values of cT-2 we can choose.  So we take FOCs, etc. 
and find the optimal cT-2* as simple static optimization.  And so we continue on iterating 
backwards.  We go to period T-3 and use cT-2

*, cT-1
* and cT

* as the constraints to that 
maximization problem, etc.   We do this continuously until we get back to the beginning 
(time t = 0).   Thus, it is a backwardly "recursive" system. We start from the end and solve 
backwards by this normal fashion. When we have iterated backwards completely via this 
recursive method through all the value functions, we effectively generated an entire series of 
optimal values: 
 
 {c1

*, c2
*,......., cT-2

*, cT-1
*, cT

*} 
 
which, when plotted, is quite simply the "optimal path".    
 
We could solve an entire intertemporal optimizing problem of max T

t=1 tu(ct) s.t. kt+1 = 
(kt) - ct via this recursive method.  Unlike optimal control, we did not need to go looking for 
a specific dynamic equation to integrate and get a solution.   How do we know it is the same 
solution?  Consider the original intertemporal problem again.  If we had set it up as a 
Lagrangian, we would obtain something like: 
 
 L = t=1

Ttu(ct) + 1(k2 - (k1) - c1) + 2(k3 - (k2) - c2) + .... T(kT+1  - (kT) - cT) 
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where final capital stock kT+1 must conform to some prespecified transversality facet.  We 
obtain, from this, a set of first order conditions which yield a path {ct*}t=1

.  To see 
equvialence (if you are not yet convinced),  recall that at any period t, our value function 
was: 
 
 Vt(kt) = max {u(ct) + Vt+1(kt+1)} s.t. kt+1 = (kt) - ct 
     ct 
where we have noted underneath the max operator that we are merely choosing ct.  Now, as 
Vt+1(kt+1) = max{u(ct+1) + Vt+2(kt+2)} where we are merely choosing ct+1, then plugging this 
into our original problem: 
 
 Vt(kt) = max {u(ct) + ( max{u(ct+1) + Vt+2(kt+2)})} 
     ct     ct+1 
 
or, combining max operators: 
 
 Vt(kt) = max {u(ct) + u(ct+1) + 2Vt+2(kt+2)}  s.t. kt+2 = (kt+1) - ct+1 
            {ct, ct+1}            kt+1 = (kt) - ct 
 
thus, we are now choosing two variables, ct and ct+1 - subject to two constraints. Iterating 
again and again until the final period T, we obtain: 
 
 Vt(kt) =       max     {T

=t  -t u(c)}  s.t. k+1 = (k) - c for all t    T 
            {ct, ct+1, ..., cT} 
 
thus, we are trying to find an "entire" path {c}=t

T with a single value function - 
appropriately iterated.  If we consider kt  as our initial k, then Vt(kt) is merely the maximized 
value of the earlier intertemporal optimization problem's objective function.  The constraint 
works implicitly in a similar manner as before as the {ct}t=1

T can only take values restricted 
by the difference equation, kt+1 = (kt) - ct.  Thus, if we wished, recognizing that c = (k) - 
k+1, then we could rewrite this entirely with kt+1 as our controls so: 
 
 Vt(kt) =       max     {T

=t  -t u((k) - k+1)} 
            {kt+1, kt+2, ..., kT} 
 
and the system is explicit and complete.  The solution is identical as to the one obtained by 
the maximization of the original system via Lagrangian methods.  Going forward, or going 
backwards, we obtain in the end the essential result that: 
 
 V0(k0) = max     {T

t=1  t u((kt) - kt+1)} 
            {k1, k2, ..., kT} 
 
to solve the entire system - as k0 is given. 
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All this can be illustrated as in Figure 1.  We have here five time periods from t0 to t5.  We 
have an initial state (k0) and a final state (k5).  Going forward from k0, we can choose either 
k11 or k12, depending on which we think is "better" by the value function.  Suppose we 
choose k12.  Then at period t1, we begin at k12 and must now choose between going to k22 or 
k23 (k21 being no longer possible).  If we believe k22 is better, we go in that direction.  At time 
t2, starting at k22, we are now forced to go to k32 as that is the only option.  At t3, starting at 
k32, we can choose either k42 or k43, and we choose to go to k42.  Finally, at k42 at t4, we are 
forced to go to kT as that is our endpoint constraint.  Thus, our series of multi-stage decisions 
have plotted out a path from k0 to kT via k0  k12  k22  k32  k42  kT and this is the 
"optimal" state path, even though we could have gone through many others. 
 
 
 

k12

k11

k23

k22

k21

k32

k31

k43

k42

k41

kT

k0

state

timet0 t5=Tt4t3t2t1  
 

Figure 1 - Optimal Path via Multi-Stage Dynamic Programming 
 
Backwards recursion works effectively the opposite way.  Suppose we are at the next-to-last 
period t4 and we are restricted to go to kT in the final time period.  We have three choices: 
k41, k42 and k43.  We choose k42 as the "best".  Consequently, going back one period to t3, we 
must now choose between k31 and k32 subject to the constraint that k42 will be our the state in 
the next period t4.  Suppose we now choose k32 as being "better" than k31.  Then going 
backwards one more period to t2, we now must choose between k21, k22 and k23 subject to the 
constraint that we are at k32 in the next period.  But notice that this knocks k21 out of 
contention as an option.  Thus, we are forced to choose between k22 and k23.  If we take k23, 
then going back a period to t1, we must now choose between k11 and k12 subject to the 
constraint that k23 is the next period's state.  Again, this knocks k11 out of consideration, and 
we must choose k12.  Finally, in the initial time period, we choose the path that takes us from 
k0 at t0 to k12 in time period t1.  Thus, by backwards recursion we trace out the same optimal 
path, k0  k12  k22  k32  k42  kT.   
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It might be worthwhile considering a specific exercise.  Here, we shall consider two: an 
optimal consumption-savings decision problem and an optimal investment model. 
 
(i) Example No.1 - Consumption-Savings Decisions 
 
Suppose we have the simple consumption-savings problem for three periods: 
 
 max  u(c1) + u(c2) + 2u(c3) 
 
     s.t. 
  xt+1 = R(xt - ct)  
  x1 given 
  x4  0. 
 
For simplicity, let u(ci) = ln ci.  Then, let us consider each of the value functions individually.  
In the last period,  we maximize period 3 consumption subject to the constraint that R[x3 - c3] 
 0.  As we do not want any assets in period 4, we face the value function: 
 
 V3(x3) = maxc3{u(c3)} = maxc3{ln c3}  s.t. R[x3 - c3]  0 
 
which, deriving FOCs, yields at the optimum c3* = x3. Thus, plugging this back in, the value 
function in period 3 is: 
 
 V3(x3) = ln x3 
 
In period 2, we face the value function: 
 
 V2(x2) = maxc2{u(c2) + V3(x3)}  s.t. x3 = R[x2 - c2] 
 
so the first order condition yields: 
 
 dV2/dc2 = 1/c2 - (dV3/dx3)(dx3/dc2) = 0    (FOC2) 
 
Now, by the transition function, dx3/dc2 = -R, thus the FOC becomes: 
 
 1/c2  = R(dV3/dx3) 
 
The only thing that remains is dV3/dx3.  As this V3 must already be optimal, we know from 
before that V3(x3) = ln x3 or simply, by the transition function, V3 = ln [R(x2 - c2)], so 
dV3/dx3 = 1/[R(x2 - c2)], so the FOC becomes 
 
 1/c2 = R/[R(x2 - c2)] = /(x2 - c2) 
 
or: 
 c2[1 + 1/] = x2/ 
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thus: 
 c2* = x2/(1+)        (PF2) 
 
which is our solution.  This is what is called the "policy function" for period 2, i.e. c2* = 
h2(x2) = x2/(1+) - thus, given x2, we can find c2* via this function.   Notice that this also 
implies that x3 = R[x2 - c2*] = Rx2/(1+).  Thus, the value function at time 2 can be 
rewritten: 
 
 V2(x2) = ln (x2/(1+)) +  ln [Rx2/(1+)] 
 
or simply: 
 
 V2(x2) = ln x2 - ln (1+) + [ln R + ln x2 - ln  - ln (1+)] 
 
Now, the Benveniste-Scheinkman condition states that dU/dc2* = dV/dx2.  So, as we know, 
dU/dc2* = 1+/x2.  Does this hold?  Well, note that dV/dx2 = 1/x2 + /x2 = (1+)/x2.  So it 
does.  
 
In period 1, we face the value function: 
 
 V1(x1) = maxc1{u(c1) + V2(x2)} s.t. x2 = R[x1 - c1] 
 
So the first order condition yields: 
 
 dV1/dc1 = 1/c1 - (dV2/dx2)(dx2/dc1) = 0.    
 
By the transition function, dx2/dc1 = -R again, so: 
 
 1/c1  = R(dV2/dx2)      (FOC1) 
 
We now face the problem of dV2/dx2.  The Benveniste-Scheinkman condition claims that: 
 
 dV1/dx1 = (dV2/dx2)(dx2/dx1) = R(dV2/dx2)   (BS) 
 
thus, plugging the FOC into this and iterating forward by one period: 
 
 dV2/dx2 = 1/c2* 
 
(we have to remember that the c2* is optimal).  Now, we derived earlier the policy function 
c2* = x2/(1+), thus plugging this into the equation: 
 
 dV2/dx2 = (1+)/x2 
 
and then plugging this into the FOC: 
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 1/c1 = R(1+)/x2 
 
Or, as x2 = R[x1 - c1], then: 
 
 1/c1 = R(1+)/[R(x1 - c1)] =  (1+)/(x1 - c1) 
 
or simply: 
 
 c1* = x1/(1 +  + 2)      (PF1) 
 
which is our "policy function" for period 1, i.e. c1* = h1(x1).  Note that the form of the policy 
function for period 1 (PF1) is different from the policy function for period 2.   Thus, our 
value function at period 1 is: 
 
 V1(x1) = ln c1* + V2(x2)  
 
Now, c1* = x1/(1++2) implies that: 
 
 V1(x1) = ln x1 - ln (1++2) + V2(x2) 
 
But recall that V2(x2) = ln (x2/(1+)) +  ln [Rx2/(1+)].  Thus, the value function becomes: 
 
 V1(x1) = ln x1 - ln (1++2) + {ln (x2/(1+)) +  ln [Rx2/(1+)]} 
 
But, recall that x2 = R[x1 - c1*], so, substituting for c1*, then  x2 = Rx1(1+)/[1 + (1+)]).  
Thus: 
  
 V1(x1) = ln x1 - ln (1++2)  
 
  + (1+) ln [Rx1(1+)/(1 + (1+))] + [ ln (R/(1 +))  - ln (1+)]. 
 
or: 
 
 V1(x1) = (1++2) ln x1 - ln (1++2) +  ln [R(1+)/(1 + (1+))]  
 
   + [ ln (R/(1 +))  - ln (1+)]. 
 
which is a very, very ugly term.  However, it might be useful to verify if the Benveniste-
Scheinkman condition holds.   We can see from the ugly term above that dV1/dx1 = (1 +  + 
2)/x1.  But, we also know that dU/dc1* = (1 +  + 2)/x1.  Thus, indeed, dU/dc1* = dV/dx1, 
i.e. the BS condition holds. 
 
Thus, note that we have obtained three different value functions V1(x1), V2(x2) and V3(x3) - 
all of which have different forms.  We have also obtained three different policy functions, 
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c1* = h1(x1) = x1/(1+ + 2), c2* = h2(x2) = x2/(1+) and c3* = h3(x3) = x3 - all of which have 
different forms.  Nonetheless, note that the solution to our intertemporal problem is equal to 
the solution to our dynamic programming method via value functions. 
 
(ii) Example No.2 - Investment with Adjustment Costs 
 
Firm faces investment decision in a finite horizon.  There is no depreceiation, so kt+1 = kt 
+ yt, where yt is investment.  Current profits are defined as t[kt, yt] = Atkt - B/2yt

2 - thus, 
note, we have "adjustment costs" in the form of profits declining profits by some amount 
proportional to the square of investment.    At can be thought of as the average 
productivity of capital.  Firm's maximization problem is: 
 
 max t=0

T t{t} 
 
 s.t.  kt+1 = kt + yt 
  k0 fixed. 
 
The dynamic programming problem can be written with yt as control and kt as state.  As 
we have finite time, the value function at time t is: 
 
 Vt(kt) = max {t[kt, yt] + Vt+1(kt+1)} 
    yt 
 
or:  
 Vt(kt) = max {Atkt - B/2yt

2 + Vt+1(kt + yt)} 
    yt 
 
We can obtain the Euler Equation for time t < T via the FOC and Benveniste-
Scheinkman.  Namely, taking the first order condition: 
 
 dt/dyt + (dVt+1/dkt+1)(dkt+1/yt) = 0 
 
or, as dt/dyt = -Byt and dkt+1/yt = 1: 
 
 Byt  = (dVt+1/dkt+1)      (FOC) 
 
Our next step is to derive the Benveniste-Scheinkman condition.  Differentiating: 
 
 dVt/dkt = dt/dkt + (dVt+1/dkt+1)(dkt+1/dkt) 
 
or, as dkt+1/dkt = 1 and as dt/dkt = d(Akt - B/2yt

2)/dkt = At, then: 
 
 dVt/dkt = At + (dVt+1/dkt+1)     (BS) 
 
Now, plugging in the FOC for the second term: 
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 dVt/dkt = At + Byt 
 
iterating one period forward: 
 
 dVt+1/dkt+1 = At+1 + Byt+1 
 
and plugging this back into the FOC: 
 
 Byt  = (At+1 + Byt+1) 
 
or simply: 
 
 yt = (At+1 + Byt+1)/B      (EE) 
 
Which is our "Euler equation".   
 
The issue now comes around to deriving the optimal control path.  To do this, we must 
iterate backwards recursively.  We can do this either by iterating on the Euler Equation or 
on the Value Function.  Let us begin with the Euler.  Starting at T, then, the optimal 
investment is yT* = 0 because it is costly and yields no future benefit.  At T-1, we have: 
 
 yT-1* = (AT + ByT*)/B = AT/B 
 
because yT* = 0.  At T-2, we have: 
 
 yT-2* = (AT-1 + ByT-1*)/B = (AT-1 + B(At/B))/B 
 
or simply: 
 
 yT-2* = (AT-1 + AT)/B 
 
and so on.  Thus, it is apparent that, for any t: 
 
 yt* = At+1 + 2At+2 + ... + T-tAT)/ 
 
is the optimal investment at any time t < T. 
   
Let us now do the same exercise of backward recursion on the value function.  At T: 
 
 VT(kT) = ATkT 
 
as yT* = 0.  Then, at T-1: 
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 VT-1(kT-1) = max {T-1[kT-1, yT-1] + VT(kT)}  s.t. kT = kT-1 + yT-1 
           yT-1 
or: 
 
 VT-1(kT-1) = max {AT-1kT-1 + B/2yT-1

2 + VT(kT-1 + yT-1)} 
           yT-1 
 
From the previous result, VT(kT-1 + yT-1) = AT(kT-1 + yT-1), so: 
 
 VT-1(kT-1) = max {AT-1kT-1 + B/2yT-1

2 + AT(kT-1 + yT-1)} 
           yT-1 
 
Thus, maximizing, we obtain the first order condition: 
 
 dVT-1/dyT-1 = - ByT-1 + AT = 0 
 
or: 
 
 yT-1* = AT/B 
 
exactly the same solution we obtained earlier.  Thus, completing, the value function by 
plugging in the optimal value yT-1*, we obtain: 
 
 VT-1(kT-1) = AT-1kT-1 - B/2(AT/B)2 + AT(kT-1 + AT/) 
  
Going to period T-2, we have the value function: 
 
 VT-2(kT-2) = max {T-2[kT-2, yT-2] + VT-1(kT-1)} s.t. kT-1 = kT-2 + yT-2 
           yT-2 
 
or substituting in for our previous result on VT-1(kT-1): 
 
VT-2(kT-2) = max {AT-2kT-2 + B/2(yT-2)

2  
          yT-2 
    +  [AT-1kT-1 - B/2(AT/B)2 + AT(kT-1 + AT/B)]} 
 
substituting for kT-1: 
 
VT-2(kT-2) = max {AT-2kT-2 + B/2(yT-2)

2  
          yT-2 
   + [AT-1(kT-2 + yT-2) - B/2(AT/B)2 + AT(kT-2 + yT-2 + AT/B)]} 
 
Taking FOC for yT-2: 
 
 dVT-2/dyT-2 = -ByT-2 + (AT-1 + AT) = 0 
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or simply: 
 
 yT-2* = (AT-1 + 2AT)/B 
 
which, again, is identical to before. 
 
Thus, in this simple, finite-dimensional world, backwards iteration the Euler Equation 
and backwards iteration on value functions yields an identical solution for a quite simple 
optimal investment path, {yt}

T
t=0.   

 
(iii) Habit Formation 
 
Consider the following finite-horizon consumption-savings problem with "habit-
formation": 
 
 max  t=1

T t-1u(ct, ct-1) 
 
     s.t. 
  xt+1 = R(xt - ct)  
  x0 given 
  where du/dct = U1(ct, ct-1) > 0 and du/dct-1 = U2(ct, ct-2) < 0. 
 
where the lagged term ct-1 entering the utility function captures the phenomenon of "habit 
formation".   U1 and U2 denote the first and second partial derivatives of the utility 
function u(ct, ct-1).   The first issue is to tackle states and controls: in this case, ct-1 and xt 
are the states as these are the things which we enter period t with, whereas ct is the 
control (alternatively, we could take xt+1 as control).  Then, the value function at any time 
t is: 
 
 Vt(xt, ct-1) = max {u(ct, ct-1) + Vt+1(xt+1, ct)}    s.t. xt+1 = R(xt - ct) 
                      ct 
The first-order condition for a maximum is: 
 
 dVt/dct = U1(ct, ct-1) + (dVt+1/dxt+1)(dxt+1/dct) + (dVt+1/dct) = 0  
 
or, as dxt+1/dct = -R, then: 
 
 U1(ct, ct-1)  = R(dVt+1/dxt+1) - (dVt+1/dct)   (FOC) 
 
Now, we have two state variables and two V-terms to get rid of - thus we will need two 
Benveniste-Scheinkman conditions.    Let us take the dVt/dxt case first: 
 
 dVt/dxt = (dVt+1/dxt+1)(dxt+1/dxt) = R(dVt+1/dxt+1)  (BS1) 
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Now, for the second case dVt/dct-1: 
 
 dVt/dct-1 = U2[ct, ct-1]      (BS2) 
 
Now, plugging in (BS1) into the (FOC), we obtain: 
 
 U1(ct, ct-1)  = (dVt/dxt) - (dVt+1/dct)   
 
then, iterating one-period forward: 
 
 U1(ct+1, ct)  = (dVt+1/dxt+1) - (dVt+2/dct+1)   
 
then, iterating (BS2) two periods forward so dVt+2/dct+1 = U2(ct+2, ct+1) and plugging in: 
 
 U1(ct+1, ct)  = (dVt+1/dxt+1) - U2(ct+2, ct+1)  
 
multiplying through by R and rearranging: 
 
  R(dVt+1/dxt+1) = R[U1(ct+1, ct)  + U2(ct+2, ct+1)] 
 
thus, equating this with the (FOC): 
 
 U1(ct, ct-1) + (dVt+1/dct) = R[U1(ct+1, ct)  + U2(ct+2, ct+1)] 
 
finally, plugging in (BS2) iterated a period ahead: 
 
 U1(ct, ct-1) + U2[ct+1, ct] = R[U1(ct+1, ct)  + U2(ct+2, ct+1)] 
 
and rearranging: 
 
 U1(ct, ct-1) = RU1(ct+1, ct)  + 2RU2(ct+2, ct+1) - U2[ct+1, ct]   (EE) 
 
which is our Euler Equation.  We could attempt a solution by backward iteration of this 
recursive system, but we shall avoid doing so.  This merely serves to illustrate how to find 
Euler Equations when there are multiple state variables. 
 
There are four main lessons to be drawn from the recursive method with a finite time 
horizon:  
 

(1) the optimal solution to the finite-horizon intertemporal optimization problem is 
identical to the set of solutions obtained recursively from maximizing the one-period 
problem represented by the Value Function. 
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(2) in some cases, we can obtain the optimal solution path by backwards recursion on 
the Euler Equation or by backwards recursion on the Value Function - as in our 
investment case;   
 
(3), if we cannot get an explicit optimal solution path, at least we can obtain an 
explicit optimal policy function, as in the consumption case where we could express 
optimal control variable in any time period t ct* as some function of the concurrent 
state xt, i.e. ct* = ht(xt) - as in our consumption-savings case. 
 
(4) in principle, the form of the value function and/or the policy function at any time t 
are different from the value function and/or policy function at any other time, i.e. ht  
ht+1 and Vt  Vt+1. 
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(2) The Infinite Case: Bellman's Equation 
 
(A) Some Basic Intuition 
 
A question emerges immediately:  what happens when we have an infinite horizon, i.e. when 
there is no "final" time period T?  How do we solve that "recursively" when there is nowhere 
to recurse from?  The workhorse in this case is the Bellman's Equation - which is simply the 
value function we saw earlier, only now applied indiscriminately between any two time 
periods.  Recall the value function for finite time was: 
 
 Vt(kt) = max {u(ct) + Vt+1(kt+1)}    (VF) 
 
Then, letting prime () denote "future",  Bellman's Equation is merely: 
 
 V(k) = max {u(c) + V(k)}     (BE) 
 
where note the very important point that the V for V(k) and the V for V(k) are identical - i.e. 
the value function is time-invariant.   
 
What does this have to do with "solving" for the optimal path {ct*}t=0

?   Well, that's the 
whole purpose of Stokey and Lucas's (1989) dense discussion from Chapters 3 and 4, 
namely to prove that the "solution" to the intertemporal problem is equivalent to "solving" 
Bellmans' equation and that a unique solution exists. What Stokey and Lucas demonstrate is 
that, under certain conditions, the function V(k) that solves V(k) = max {u(c) + V(k)} is 
exactly the same function V(k) that solves V(k0) = max t=0

 tu(ct) s.t. kt+1 = (kt) - ct for a 
given initial k0.  This is a striking assertion but we already saw this equivalence in the finite 
horizon case.  This is Bellman's (1957) "Principle of Optimality". 
 
What is more striking is that in the infinite horizon case, the value function form is time-
invariant.  We can think of it as follows.  Consider our original VF for the finite horizon 
case.   This was:  
 
 Vt(kt) = max {u(ct) + Vt+1(kt+1)}    (VF) 
 
where we are choosing a ct  Ct (the set of admissable values for ct).  If Ct is time-invariant 
or can be made so (so Ct = Ct+1 = C), then ct  C.   This is not that restrictive as usually C = 
R or some other rather conventional term.  More restrictive is the assumption that U and  
are time-invariant as well - but these are conditions we must impose.  As a result,  t is 
arbitrary for the arguments, so that we can rewrite VF as: 
 
 Vt(k) = max {u(c) + Vt+1(k)}  
 
where k is one period ahead of k.  The only thing that is not time-independent, then, are the 
value functions themselves.   However, recall that in our finite-horizon case, the pattern of 
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recursion of one value function into another was VT(k)  VT-1(k)  VT-2(k)  ...... V1(k) 
 V0(k).  What Stokey and Lucas assert is that, in infinite time, then from any initial V0, 
then as t  , we Vt  V, a unique value function.  This is what permits us to write our 
Bellman's equation as: 
 
 V(k) = max {u(c) + V(k)} 
 
where, note again, the V for V(k) is the same as the V for V(k).    
 
The intuition of why we should obtain a single V for all time periods in the infinite case 
should be obvious.  In a finite horizon case, this should not be possible because Vt(kt) and 
Vt+1(kt+1) have different futures - the former has (T - t) time periods ahead of it, whereas the 
latter has (T-t-1) time periods ahead of it.  The "doomsday" date T effectively makes the 
difference.  But if we have no doomsday, if we have an infinite horizon, then both Vt(kt) and 
Vt+1(kt+1) have the same number of future time periods ahead of them - namely, infinity.  
Thus, if they face the same "future", in a sense, they ought to have the same "value" function 
V(.).  Thus, V(k) and V(k) are different only in the arguments (k and k) and not in the 
functional form (V(.)).  
 
(B) Why does Bellman's Equation Exist? 
 
Under what conditions is this Bellman's Equation, this value function with unique V(.) for 
any period, possible?   Let us consider this more carefully and in a more general case.   Let 
us take the now-familiar general notation of Kamien and Schwartz (1991).  Suppose we have 
state variable xt and control variable ut (they can be vectors). Suppose we have "return 
function" F(xt, ut, t) and a "transition function" xt+1 = g(xt, ut, t).   Thus, we seek to maximize 
the following: 
 
 max 

t=0 F(xt, ut, t) 
 
 s.t. xt+1 = g(xt, ut, t) 
  x0 given.  
 
Thus, in the previous consumption-savings example, the utility function was our "return" 
function and the asset-accumulation equation was our "transition" function with 
consumption as control and asset as state.   In the investment example, profit was our return 
function and capital-accumulation our transition function with investment as control and 
capital as state.   
 
Assumption (1): the functions are time-autonomous, i.e. the return function and the transition 
function are independent of time, thus we can rewrite them as F(xt, ut) and xt+1 = g(xt, ut). 
 
This was true for U and  in the Solowian model, the consumption model and the investment 
model.  They may not be so in general cases, but to streamline our problems, this must be 
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assumed.  At this point, this is not too damning - but when we consider stochastic problems, 
it causes some difficulties. 
 
Assumption (2): F(xt, ut) is concave and bounded. 
 
Assumption (3): the set  = {xt+1, xt, ut  xt+1  g(xt, ut)} is convex and compact for 
admissable values of ut. 
 
These assumptions yield the following results: namely, we can specify a functional equation: 
 
 V(x) = maxu {F(x, u) + V(x)} s.t.  x = g(x, u),  x0 given. 
 
and it will be the case that: 
 
(1) (Existence and Uniqueness) the functional equation  has a unique concave solution, V(x). 
 
(2) (Recursive Limit) this solution V(x)  is approached in the limit as t   by iterations on 
the time-specific value function Vt(x) = maxu {F(x, u) + Vt+1(x)}. 
 
(3) (Principle of Optimality) For x = x0, the V(.) that solves the functional equation is the 
same as the V(.) that solves the intertemporal problem, i.e. 
 
   V(x0) = max t-0

t F(xt, ut)  
   s.t. xt+1 = g(xt, ut) 
         x0 given 
 
(4) (Policy Function)  there is a unique and time-invariant "policy function" u = h(x) = 
argmax [F(x, u) + V(x)]. 
 
(5) (Benveniste-Scheinkman) off corners, the limiting value function V is differentiable 
with: 
 
 dV(x)/dx = dF(x, h(x))/dx + [dV/dg]·[dg(x, h(x))/dx]  
 
 
The conditions stated are sufficient (but not necessary) conditions to yield the propositions 
(1)-(5)  we have here.  More general cases can be found.  Economically, the main point is 
that the solution to the Bellman's equation, V(x),  is the same as that of the intertemporal 
optimization problem (Result 3) and that we obtain a unique "policy function" u = h(x) 
which we can then use to map out the "optimal path" (Result (4)).  Mathematically, the main 
point is that a unique, time-invariant V(.) exists (Result 1) and that it is the limit of a 
recursive sequence of time-dependent value functions (Result 2). Result (5), the Benveniste-
Scheinkman condition, is, as we have already seen, highly useful for applications.   
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The way this mathematical set of results ((1) and (2)) is proved is via a contraction mapping.  
Namely, as Vt(x) is defined for particular time and value functions enter recursively into 
each other, we obtain a "transition function" from one value function to another which, as is 
demonstrated in Stokey and Lucas (1992: p.79, Th. 4.6), yields a contraction mapping and 
thus a fixed point (see Appendix I).   More specifically, we had, in the time-dependent case: 
 
 Vt(x) = maxu {F(x, u) + Vt+1(x)}     (VF) 
 
where u  Rn (as we may have n controls) and x  g(x, u), x  X and   (0, 1).   We can 
define the operator T as Vt = TVt+1.  In this case: 
 
 TVt+1(x) = maxu {F(x, u) + Vt+1(x)} 
 
but note that the two value functions, TVt+1 and Vt+1, are still different from each other.  If 
F(x, u) is real valued, continuous, concave and bounded and the set {x, x, u x  g(x, u), u 
 Rn} is convex and compact, and Vt+1   C(X) (where C(X), the set of continuous bounded 
functions on X, is a complete normed vector space equipped with a sup norm),  then, T: 
C(X)  C(X) is mapping a continuous bounded function to a continuous bounded function.  
It is easy to note that T is monotone and satisfies discounting, i.e. if Vt+1(x)  W(x) for all x 
 X, then: 
 
 TVt+1(x) = maxu {F(x, u) + Vt+1(x)}  maxu {F(x, u) + W(x)} = TW(x) 
 
thus monotonicity is fulfilled.  Similarly, for any scalar : 
 
 T(Vt+1+)(x) = maxu {F(x, u) + [Vt+1(x) + ]}  
   
        = maxu {F(x, u) + Vt+1(x) +} = TVt+1(x) +  
 
thus discounting is fulfilled.  By Blackwell's Sufficiency Criteria, a fixed point exists, i.e. 
there is a unique Vt+1*  C(X)  such that TVt+1* = Vt+1*.   This fixed-point is approached by 
iterations Vt+1

k = Tk(V0) where V0 is some initial bounded, continuous function  - which, in 
this space, implies uniform convergence of the functions Vt+1

k.  (also, if C(X) is restricted to 
concave functions, then if TVt+1 and Vt+1 are concave functions and so is Vt+1*).   
 
What does this imply?  Recall that the fixed point claims that Vt+1* = TVt+1*. But, we also 
know that TVt+1 = Vt by our definition of T.  Thus, Vt+1* = Vt* - which will be true for all t.  
Thus, dropping the asterisk, we have a unique value function V = Vt = Vt+1 for all t, which 
implies: 
 
 V(x) = maxu {F(x, u) + V(x)} 
 
which is our Bellman's equation.   The equivalence of the solution V(x) of this Bellman's 
equation to the solution to the intertemporal problem  - Richard Bellman's "Principle of 
Optimality"  - we shall pass over in silence and refer to Appendix A.  We already saw the 
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equivalence for the finite case; the infinite case is really a  mere extension of that analogy.   
The existence of a unique policy function u = h(x) = argmax V(x) is coincidental to the proof  
of a unique V. 
 
(C) Euler Once Again 
 
We actually already know how to employ Bellman's equation to solve intertemporal 
problems - for the general solution method has already been outlined earlier when we 
obtained the Euler Equation from the time-dependent value function.  This is not a general 
solution, nor even a solution properly speaking, but it drops out of the Bellman's Equation 
for many of the problems we deal with in economics - and, even if we cannot derive an 
optimal path for controls and states (the ultimate objective), we get some idea of their 
properties.  
 
The method of obtaining the Euler from the value functions has already been outlined earlier.  
Now, we do it once again, but this time for the Bellman's and only in general form.  Consider 
the consumption-savings problem outlined earlier, which yields the Bellman's Equation: 
 
 V(x) = max{u(c) + V(x')}      (BE) 
 
where x = R[x - c].   
 
Steps: 
 
(1) plug the difference equation x = R[x - c] in instead of x'. 
 
 V(x) = max{u(c) + V(R[x - c])}     (BE) 
 
(rules of thumb: in principle, either c or x is the control; x is always the state; whenever you 
can, manipulate the equations you have so that your control variables appear in the V(x) 
equation as often as possible). 
 
(2) get the first order condition (FOC) by taking the derivative with respect to c (or whatever 
the control variable is) and then setting to zero. (- if there is more than one control variables 
at one time,  then you must take a FOC for each control) 
 
 dV/dc = Uc - (dV/dx)(dx/dc) = UC - R(dV/dx) = 0   (FOC) 
 
(3) get the Benveniste-Scheinkman (BS) condition by taking the derivative with respect to 
the state variable x (but don't set this to zero!) (- if there is more than one state variable at 
one time, then you must take a BS condition for each state) 
 
 dV/dx = (dV/dx)(dx/dx) = R(dV/dx)    (BS) 
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(4) Plug the FOC into the BS and get an expression for dV/dx 
 
 dV/dx = Uc 
 
(5) Iterate the FOC one period forward (i.e. prime everything once). 
 
 dV/dx = UC 
 
 (6) Plug the iterated term dV/dx into the FOC  to obtain the Euler Equation (EE). 
  
 Uc = RUC        (EE) 
   
and that's all there is to it!   
 
Actually, that's far easier said than done.  It is not only difficult to get the Euler Equation in 
many cases, but in most cases the Euler is not enough.  The objective is to draw out the 
optimal path - usually by finding the optimal policy function, c = h(x), and this involves 
often little more than educated guesses.   An optimal policy function allows us to possibly 
obtain the optimal path {ct, kt}t=0

 analytically, but, far more often, a computer and an 
algorithm is absolutely necessary. 
 
In general cases where V(x) = max [F(x, u) + V(x)] s.t. x = g(x, u), the steps to obtaining 
an Euler Equation are essentially identical.   
 
(1)  The first thing is to identify the states and controls; a usual rule of thumb is to look at the 
transition function, see which are states and controls.  As noted, there are two ways of 
writing Bellman's - with x as controls or with u as controls, so: 
 
 V(x) = max [F(x, u) + V(g(x, u))]    (BE with u) 
 
is a BE which uses u as control, whereas, if you can invery so that u = g-1(x, x) 
 
 V(x) = max [F(x, g-1(x, x) + V(x)]    (BE with x) 
 
is a BE which uses x as control.  As noted, always make your controls appear "everywhere". 
 
(don't confuse states with controls!  If you get confused, look at the transition equation and 
see which variables are iterated forwards (or backwards),  then, take the "present" version of 
that term as your state; thus, examining x = g(x, u), we see immediately that x is iterated 
forward, so the present version of it, x, is the state). 
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(2) get the first order condition (FOC) by taking the derivative with respect to controls and 
then setting to zero. 
 
- this is standard differentiation.  If you wrote your Bellman's well so that the control 
variables appear everywhere they can, this should be a cakewalk.   In general: 
 
 dV/du = dF/du + [(dV/dx)·(dx/du)] = 0    (FOC) 
 
where dV/dx is, of course, dV/dg(.) and dx/du is merely dg(.)/du. 
 
(3) get the Benveniste-Scheinkman (BS) condition by taking the derivative with respect to 
the state variables x 
 
- the Benveniste-Scheinkman condition is supposed to be done after you find the "optimal" 
controls as functions of the states, u = h(x), which makes differentiation look harder. But it 
actually isn't because a LOT of terms will disappear by the "envelope theorem". To illustrate 
this, differentiate the entire Bellman's with respect to x (allowing for the fact that u may be a 
function of x): 
 
dV/dx = dF/dx + (dF/du)·(du/dx) + [(dV/dx)·(dx/dx) + (dV/dx)·(dx/du)·(du/dx)] 
 
where du/dx is the derivative of u = h(x).   Lots of terms, lots of chain rules, right?  Well, 
usually the "envelope theorem" allows you to set all terms {du/dx} to zero!  So this becomes 
much reduced to: 
 
 dV/dx = dF/dx + [(dV/dx)·(dx/dx)]     (BS) 
 
Much better!  In many problems, often (but not always), F(.) is independent of x, so dF/dx = 
0.  If you're this lucky, we have an even simpler Benveniste-Scheinkman condition. 
 
(4) Plug the FOC into the BS condition: 
 
- specifically, you usually can connect (dV/dx] in the two equations.  (you may also have 
to invert the rightmost side of the FOC, so  -(dF/du)(du/dx) = [dV/dx] would be the 
expression to be inserted).  Plug that into BS: 
 
 dV/dx = dF/dx  - (dF/du)(du/dx)·(dx/dx) 
 
or, recalling that x = g(x, u), then we rewrite this for the next step: 
 
 dV/dx = dF/dx  - (dF/du)(du/dg(x,u)·(dg(x, u)/dx)   
   
(5) Iterate this one period forward (i.e. prime everything once). 
 
 dV/dx = dF/dx  - (dF/du)(du/dg(x,u)·(dg(x, u)/dx)   
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It looks ugly here - but in actual problems it looks much simpler. 
 
(6) Plug the iterated term back into FOC to obtain the Euler Equation (EE). 
 
As x' = g(.) by the transition function, then dV/dx' = dV/dg(.).   So substitute the entire BS2 
for the the term dV/dg(.) in the original FOC. 
 
 dF/du = - (dx/du)[dF/dx - (dF/du)(du/dg(x,u)·(dg(x, u)/dx)]  (EE) 
 
So, note, there are no "V" terms inside the equation - so we need to know nothing about the 
form of the value function.  This is the Euler Equation - very ugly in its present form, but 
guaranteed in concrete applications to be much simpler. 
 
And that's all folks! - at least for the Euler...The solutions, as noted earlier, are more 
complicated. 
 
(D) Setting up the Bellman's: Some examples 
 
Here go a few examples of how to set up Bellman's equations: 
 
(i) Labor Supply/Household Production model 
 
A worker's instantanteous utility depends on the amount of market-produced commodities 
consumed c1t and home-produced goods (e.g. leisure) c2t.  In order to acquire market 
produced goods, worker must allocate some time l1t to market activities that earn a salary wt.  
Market wage evolves according to wt+1  = h(wt).  Quantity of home-produced goods depends 
on stock of expertise at beginning of period, which we label at, via a home production 
function (.). We assume this stock depreciates at rate  and can be increased by allocated 
time to non-market activities.  l^ is the maximimum amount of labor time available.  (.) and 
u(.) are bounded and continuous and a0 > 0 is given. 
 
The problem to be maximized is: 
 
 max t=0

 t u(c1t, c2t)  0 <  < 1 
 
 s.t.  c1t  wtl1t 
        c2t  (at) 
        at+1  (1-)at + l2t 
        l1t + l2t  l^ 
        wt+1 = h(wt) 
         a0 > 0 given. 
 
The state variables are (a, w) and the controls are (c1, c2, l1, l2).  Thus, the Bellman's equation 
is: 
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 V(a, w) = max {u(c1, c2) + V(a, w)} 
     c1, c2, l1, l2 
 
subject to c1  wtl1, c2  (a), a  (1-)a + l2,  l1 + l2  l^,  w = h(w).  The solution follows 
standard means (FOC for each control, BS for each state, etc.).   
 
(ii) Investment with Adjustment Costs 
 
Firm maximizes present value of cash flow with future earnings discounted at .  Income at t 
is given by sales revenue, ptqt, where pt is price and qt is quantity produced.  Firm takes 
prices as given and prices evolve according to law of motion pt+1 = (pt).  Total production 
depends on the amounts of capital, kt, labor nt and on the square of the difference between 
current ratio of sales to investment and the previous-period's ratio.  Assume that wage rate w 
is constant.   Capital depreciates at rate . 
 
The firm's problem is: 
 max t=0

 t [ptqt - wnt]  0 <  < 1 
 
 s.t.  qt + xt   g[kt, nt, (qt/xt - qt-1/xt-1)

2]  
        kt+1   (1-)kt + xt  0 <  < 1 
        pt+1 = (pt)  
        q-1/x-1 given. 
         k0 > 0 given. 
 
g(.) is bounded and increasing in the first two arguments and decreasing in the third.   
 
The state variables are k, p and the ratio q/x which we label z (thus z = q/x).  Note that as w 
is constant, it is not a state variable - even though it affects returns.  Controls are sales q, 
investment x and employment n.  The Bellman's equation, then, is: 
 
 V(k, p, z) = max {pq - wn + V(k, p, z)} 
     q, x, n 
 
subject to q + x   g[k, n, q2/(x - z)2], z = q/x, k = (1-)k + x and p = (p) - where the last 
three are the laws of motion for the state variables.  Notice then, in this problem, the tricky 
use of the ratio q/x to define a new state variable and a new law of motion.  Such tricks are 
commonly-used short-cuts to solving dynamic programming problems. 
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(3) Solving Bellman's Equation for Policy Functions 
 
In dynamic programming, "solving" things means something specific.  Recall our general 
problem: 
 
 V(x0)  =  max 

t=0 t F(xt, ut) 
 
  s.t. xt+1 = g(xt, ut) 
   x0 given 
 
Now, our previous result, we know the solution to this problem is equivalent to the solution 
to the Bellman's Equation: 
 
 V(x) = maxu{F(x, u) + V(x)} 
 
where x = g(x, u).  We still have not satisfied ourselves that the control path {ut}


t=0 is 

obtainable from the Bellman's.  But it is.  Namely, what we wish to obtain is a time-invariant 
"policy" function u = h(x) so that, given x, we can choose a specific u.  Where is this?  Well, 
if V(x) truly solves the Bellman's, then the optimal control variables u = h(x) ought to be the 
variables that maximize it, i.e. u = h(x) = argmax{F(x, u) + V(x)}.  Thus: 
 
 V(x) = F(x, h(x)) + V(g(x, h(x))) 
 
where we have plugged in g(x, h(x)) for x and h(x) for u.  Thus, V(x) and h(x) are solved 
"jointly".  Thus, if we can specify this policy function, we are home because given ut = h(xt) 
and given x = g(x, u), we can obtain the optimal path for the controls {ut}


t=0 and the 

states{xt}


t=0.    
 
How do we get this policy function from the Bellman's?  You simply can't.  Or, at least not 
generally.  Specifically, there are only two recognized methods of going about it (a third 
method - "Howard's Improvement Algorithm" is omitted but extensively discussed in 
Sargent (1997)): 
 
Method 1: Computer: iterate value function in a recursive fashion until we obtain the path.  
 
Method 2: Guess-And-Verify.  There are two types of "Guess and Verify" methods: 
 
 (a) Given the Euler Equation, guess the form of the policy function u = h(x) (controls 
 as functions of states) and then verify that this indeed holds true. 
 
 (b) Guess a specific form for the value function, verify that it solves the Bellman's  
 equation, i.e. that V = maxu {F(x, u) + V(x')} and then derive the form of u = h(x). 
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Method 1 is very complicated and rarely works to our satisfaction.  You need to set up an 
algorithm and simulate it computatonally and then only maybe a solution will be found in a 
decent amount of time. 
 
Method 2 involves some involved steps - but note the following warning: the guess-and-
verify method has proven to work in only two cases: 
 

(a) when the return function F(x, u) is quadratic and the constraints g(x, u) are linear. 
 
 (b) the return function F(x, u) is logarithmic and the constraints g(x, u) are Cobb-
 Douglas. 
 
Any other form of specification of return functions and constraints will usually not work by 
the "guess and verify method" - in which case, one really has to go turn on that computer, 
write up some iterative algorithm and pray. 
 
[Now, ladies and gentlemen of the jury, you may begin to realize why so many 
macroeconomists use specific functional forms for utility (usually quadratic or logarithmic) 
and production functions (usually linear or Cobb-Douglas).  These are the only forms which 
yield tractable analytical solutions.  Applying any other form requires some heavy-duty 
computational work.  Apparently, in macroeconomics, it is practicality and not truth that 
rules.] 
 
(A) Guess and Verify Method: The Idea 
 
As noted earlier, there are two guess-and-verify methods.  We shall  give the basic idea of 
each using the consumption problem, so V(x) = maxc{u(c) + V(x)} where x = R[x - c].  
Thus, our controls are c and our states are x: 
 
(i) Guessing the policy function u = h(x) (in our case, c = h(x)) should only be done if you 
get as far as the Euler Equation.  The steps are than as follows: 
 
 (1) Guess a shape c* = h(x)  

(2) If you got an Euler from your Bellman's, plug h(x) in the Euler Equation so dU/dc 
= R(dU/dc') becomes: 

 
   (dU/dh(x)) = Rß(dU/dh(x')) 
 
 (3) use the transition equation x' = R[x - c] and plug that in for x': 
 
  (dU/dh(x)) = R(dU/dh(R[x- c]) 
 
 (4) As c shows up again here, then plug the policy function again for c* = h(x): 
 
  (dU/dh(x)) = R(dU/dh(R[x- h(x)]) 
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 (5) Rearrange the equation so that you obtain c* as a function of x in the shape you 
 originally proposed. 
 
(ii) Guessing the Value Function form V(x). 
 
Recall that the value function is always a function of the states only.  A common example is 
the "optimal linear regulator" problem, when we guess a linear function for V, e.g. 
 
  V = E + Fx 
 
where E and F are vectors of parameters and x is the vector of parameters.  So, again for our 
particular case: 
 
 (1) Guess the form of V(x) (e.g. V = E + Fx) 
 
 (2) Equate this with the Bellman's Equation: 
 
  E + Fx = max{u(c) + V(x')} 
  
 (3) We have V(x) inside the Bellman's, so plug in the guessed form again: 
 
  E + Fx = max{u(c) + ß(E + Fx')} 
  
 (4) Derive the first-order conditions: 
 
  d(E + Fx)/dc = ..... = 0 
 
 (5) Solve for optimal c*  (recall c* = h(x)) 
  

(6) Plug c*  back into step (3) equation: 
 
  E + Fx = u(c*) + ß(E + Fx') 
 
 (7) Simplify (but do not try to solve for c* as a function of x, just do a lot factoring  
 wherever you can.) 
 

(8) If this works, you should have a coefficient attached to the x terms.  These should 
 be your term F.  The rest is your term E.  Thus you guessed "correctly".   

 
 (9) Plug back E and F into the equation for c* = h(x) and simplify.  The resulting  

c* = h(x) is your solution.  
 
Does this all sounds fishy and obscure?  Well, the best way to deal with it is to take an 
example of each. 
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(B) Guess and Verify Method: Two Examples 
 
(i) One Example: Log Return and Cobb-Douglas Transition 
 
We work through a simple example of the Solowian model.  Let us take log-preferences and 
Cobb-Douglas production function, so u(ct) = ln ct and (kt) = Akt

.  So we now have: 
 
  max 

t=0 t ln ct 
 
  s.t. 
   kt+1 = Akt

 - ct 
 
which yields a Bellman's Equation: 
 
  V(k) = max{ln c + V(k')} s.t. k = Ak - c 
     c 
 
where, please note again, that as we are in infinite time, the time subscripts have been 
dropped and "prime" denotes future.  Now, remember that we can choose either c or k' as the 
control variable - and we opt for k.  Thus, we must plug in our transition function for c, i.e. c 
= Ak - k', so the Bellman's becomes: 
 
 V(k) = max{ln[Ak - k'] + V(k')} 
    k 
 
So, now, the "solution" is really a sequence of k'*, or k' = h(k) (controls as functions of 
states) (to express for u, just run it through the transition function).  Let us use the guess-and-
verify method for the value function and denote the steps concurrently with those outlined 
earlier.  Thus, (Step 1), we guess the value function has the form: 
 
 V(k) = E + F(ln k) 
 
So equating (Step 2) this to the Bellman's: 
 
 E + F(ln k) = max{ln[Ak - k'] + V(k')} 
 
and realizing that V(k') = E + F(ln k'), then plugging that in (Step 3): 
 
 V(k') = E + F(ln k) = max{ln[Ak - k'] + [E + F(ln k')]} 
 
Deriving FOC with respect to k' (Step 4): 
 
 dV/dk = -1/[Ak - k']) + F/k = 0 
 
or simply: 
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 k' = F(Ak - k') 
 
factoring out the terms k: 
 
 (1 + F)k' = F(Ak) 
 
so dividing through by (1+F)  we obtain: 
 
 k = F(Ak)/(1+F) 
 
That was Step 5.  In effect, we have solved for k* = h(k) - although we still have unknown 
coefficients E and F in there which we must find.  We must also verify that the form 
originally proposed for the value function holds true.  Thus, now, in step 6, we must plug this 
back into the Bellman's, (so the max drops out): 
 
 E + F(ln k) = ln[Ak - FAk/(1+F)]  + [E + F(ln (FAk/(1+F))] 
 
Forget about solving this for anything!  All one needs to do is rearrange it, e.g. put the E's 
and F's together, do some log derivations. Working through ugly algebra, one will obtain the 
following (which is step 7): 
 
 E + F(ln k) = [ln A(1-) + (/(1-))(ln A)]/[1-] + [/(1-)](ln k) 
 
so that there are no F or E terms on the right-hand-side and we have factored for ln k.  This 
then implies that: 
 
 E = [ln A(1-) + (/(1-))(ln A)]/[1-]  
 
 F = [/(1-)] 
 
which proves that our guess was right: the value function does take the form E + F(ln k).  
This is step 8.  So, having identified E and F, we plug these back into the equation we had in 
Step 5, k = F(Ak)/(1+F), to obtain: 
  
 k = /(1-)](Ak)/(1+/(1-)]) 
 
then (Step 9) simplifying this, we obtain: 
 
 k' = Ak 
 
et voila! - this is our explicit policy function, expressing the control as a function of the state 
(k* = h(k)) thus we can put it through the transition function and obtain the optimal u* path 
for an initial k0. 
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With all the manipulating of these equations algebraically, we can see immediately that with 
more complicated functions which are not log/Cobb-Douglas combinations, we will have 
tremendous amounts of trouble using the guess-and-verify method - if we can at all.  So, for 
those, simulation and computational algorithms are really the only feasible way of doing 
them.   
 
(ii) The Other Example: Quadratic Return and Linear Transition 
 
We said that the quadratic/linear combination was also feasible.  The example for this is 
derived from Sargent and is called the "Optimal Linear Regulator Problem".  Here we have 
quadratic return function in the form F(x, u) = x'Rx + u'Qu  (note: the primes in this term 
denote transposes of vectors and not "future" vectors) and linear transition function, x' = g(x, 
u) = Ax + Bu.  Or: 
 
  max 

t=0 [xt'Rxt + ut'Qut] 
 
  s.t. 
   xt+1 = Axt + But 
 
Note that we are not discounting, so  doesn't appear in the objective.  A, B, R and Q are 
matrices of coefficients. Of course, x'Rx is a quadratic function  whereas Ax is a linear 
function (note: x and u are vectors).  The Bellman's equation for this case is, generally: 
 
 V(x) = max{F(x, u) + V(x')} 
 
as there is no discounting - but Sargent demonstrates that the Bellman's conditions are still 
fulfilled.  Let us take u as our control.  Thus, x = g(x, u) is plugged in place of x.  Thus, 
using our terms: 
 
 V(x) = max{x'Rx + u'Qu + V(Ax + Bu)} 
 
So let's go through the guess-and-verify method for the value function.  In Step 1, Sargent 
guesses the value function is a quadratic function, i.e.V(x) = x'Px - which is a quadratic 
function.  So, going through Step 2: 
 
 V(x) = x'Px = max{x'Rx + u'Qu + V(Ax + Bu)} 
 
But now we have V(Ax + Bu).  So, if indeed V(x) = x'Px, then V(Ax + Bu) must be (Ax + 
Bu)'P(Ax + Bu), so as in Step 3: 
 
 V(x) = x'Px = max{x'Rx + u'Qu + (Ax + Bu)'P(Ax + Bu)} 
 
We must now go to Step 4 - taking first order conditions.  Here it gets a bit ugly - check a 
linear algebra or calculus book if you want to go through derivatives of matrices. We obtain, 
as a result: 
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 dV/du = Qu + B'PBu + B'PAx = 0 
or: 
 (Q + B'PB)u = - B'PAx 
 
which, solving for u: 
 
 u = - (Q + B'PB)-1B'PAx  
 
(assuming it's invertible).  So calling F = (Q + B'PB)-1B'PA, we get: 
 
 u = - Fx 
 
which is our step 5.  So, going back to the Bellman's (Step 6), we plug this in for u (and the 
max drops out because it's already "optimal"): 
 
 V(x) = x'Rx + (-Fx)'Q(Fx) + (Ax + B(-Fx))'P(Ax + B(-Fx))} 
 
so there are no u's on the right hand side.  So, substituting our terms for F and rearranging, 
you should get: 
 
 V(x) = x'Px = x'[R + A'PA - A'PB(Q + B'PB)-1B'PA]x 
 
which is another quadratic form.  But we got Ps on the right hand side and on the left hand 
side.  So we are not finished with steps 8 and 9.  We must make P a function only of A, B, R 
and Q and not a function of itself.  Sargent suggests several rather complicated ways of 
doing this - partly by reducing this to a "Riccatti Equation" - which we don't have the 
patience to go through.  Hopefully, the point is made: P can be found and the form is right. 
 
    



 38

    PART II 
 
(4) Stochastic Dynamic Programming 
 
Stochastic Dynamic Programming is a more important issue.  In general, the Bellman's was 
written: 
 
 V(x) = max{F(x, u) + V(x')}    (BE) 
 
where x' = g(x, u).  But x' is in the future.  What if we don't know what the actual result of x' 
is?  Or rather, what if there are stochastic shocks to the future.  Consider the following 
standard Solowian stochastic growth example: 
 
 max E0[

t=0 tu(ct)] 
 
  s.t. 
   kt+1 = (kt) - ct + t+1 
 
   t+1 ~ N(0, 2) 
 
where there have been three modifications.  Firstly, we are no longer maximizing a utility 
stream but rather maximizing an "expected" utility stream.  This is because, as we see in the 
constraint, kt+1 is no longer a certain variable - there is a shock t+1 at time t+1 which may 
make the resulting kt+1 bigger or smaller than the kt+1 we expected when we chose ct.  We 
have assumed that t+1 is normally distributed with zero mean and constant variance.  Note 
that we can assume any structure for the shock.  It can be white noise (i.e. independently and 
identically distributed with zero mean and constant variance) or can follow a random walk, 
t+1 = t + ut where ut is white noise - whatever we want. 
 
The issue is that when previously we chose the control ct, we always assumed we knew what 
the result that followed (the subsequent state kt+1) and thus the next ct+1 could be chosen.  But 
now we are no longer certain what the subsequent state is so we are no longer certain what 
choosing a particular control will do in terms of affecting the future.  However, we can still 
solve it, but the solution will be different.   
 
(A) Some Basics 
 
In general, the stochastic problem can be stated as: 
 
 max E0[

t=0 t F(ut, xt)]   0 <  < 1 
 
  s.t. 
   xt+1 = g(xt, ut, t+1) 
   Prob{t  e} = F(e) for all t 
   x0 given 
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where F(e) is a cumulative probability distribution (not to be confused with the return 
function!).   Thus, the Bellman's equation is now written as: 
 
 V(x) = max{F(x, u) + E[V(x')| x]}    (SBE) 
 
where E[V(x)|x] is the conditional expectation of the future value V(x), i.e. the expected 
future value function V(x) given that we are in x at present.  Thus: 
 
  E[V[g(x, u, )] | x] =  V[g(x, u, )]dF() 
 
The proof that a unique V exists to justify our use of a Bellman's in the stochastic case is 
provided, in an analagous manner, to the certainty case by Lucas and Stokey (1989: Ch. 9).   
 
The practical method of solution remains effectively as in the certainty case.  Namely, given 
BE, we take FOC: 
 
 dV/du = dF/du + E[(dV/dx)(dx/du) | x] = 0   (FOC) 
 
where, note, we maintain the conditional expectation.  The Benveniste-Scheinkman 
condition, evaluated at the internal optimum u* = h(x), can be taken with respect to the state 
variables: 
 
 dV/dx = dF/dx + E[(dV/dx)(dx/dx) | x] = 0   (BS) 
 
which we combine with the FOC to obtain a Euler Equation: 
 
 dF/du + E[(dF[x, u]/dx)(dg(.)/du) | x] = 0   (EE) 
 
of this sort. 
 
Stokey and Lucas's notation is different from Sargent's.  They seem obsessed with expressing 
the conditional expectation term in Markov transition matrix form.  In this case, they like to 
write stochastic Bellman's equations as: 
 
 V(x, z) = max{F(x, u, z) +  Z V(x') Q(z, dz)}   (SBE) 
      u 
s.t. x = g(x, u, z) is their representation of the stochastic Bellman's equation (SBE).  Note 
that the random variable z is a state variable and enters F(.) and g(.).  Consequently, it is 
denoted in the initial list of states in the value function V(x, z).    
 
A word or two ought to be spent on the term Q(z, dz).  This is merely a probability measure.  
Consider the measurable space (S, ) where S is the set of states and  is the set of "events" 
(i.e.set of subsets of S) and it is presumed that  forms a -algebra on S.  Thus, an element A 
  is also a subset of S (a set of states).  When a measurable space is equipped with a 
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"measure", i.e. a function  that assigns to every event (i.e. A  ) a particular real number, 
then we have what is called a "measure space", (S, , ).  The only measure we care about in 
this context is the probability measure, i.e. the one which assigns "probabilities" (numbers) 
to events.  Thus, (A) is the "probability of A happening".   Or, alternatively,  is merely a 
"distribution."  
 
A "random variable", as the old saying goes, is neither random nor a variable but rather it is a 
"measurable function" : S  R.  A "measurable" function is the measure-theoretic analog 
of a "continuous" function.  Recall that we say a function : X  Y is "continuous" if for 
any open set B in Y, the inverse -1(B) is itself an open set in X.  Similarly, a function : X 
 Y is "measurable" if for any set B in the -algebra of Y, the inverse -1(B) is itself in the 
-algebra of X.  Thus, a "random variable"  : S  R is measurable takes sets in the "Borel 
-algebra" of R and the inverse of that is in the -algebra of S.    
 
Passing over a lot of intermediate material, and merely write down the "integral" of a 
measurable function as: 
 
   d = sup{i(infsAi (s)}(Ai)} 
 
where the supremum is taken over all finite partition of S into sets Ai  .  If the supremum 
does not exist, the integral has value +.  If  is measurable function to R and is measurable 
with respect to the Borel -algebra of R, then this integral is the "Lebesgue integral". 
 
With this in hand, then we can define: 
 
 E() = S (s) (ds) = S  d(S) 
 
as the expected value of the random variable .  If you don't like the notation, think of X() 
as a random variable and P as a probability measure and define: 
 
 E(X) =  X() dP() 
 
as the expected value of X.  If you still don't like that, then write: 
 
 E(X) = -+ x dFx(x) 
 
where F(x) is a cumulative probability distribution.  All these representations are effectively 
analagous.  It does not really matter.   The only thing worth mentioning are "conditional 
expectations".  These are defined as follows: 
 
 E(A) = A  dA 
 
Now, let us return to that odd character Q(z, dz).  This is a Markov process, i.e. a 
"probability distribution" which assigns particular probabilities to being in any state in the 
next period conditional on being in state z in this period, thus Q(a, A) is the probability of 
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being in a state in the set A given that one is already at a.  It is a well-defined measure.  Thus, 
if  is a random variable, then a one period-conditional expectation: 
 
 E (z) =  Z (z) Q(z, dz) 
 
is simply the expected value of  in the next time period given that we are in z now and z 
can only take values in Z.  Thus, when Stokey and Lucas define the stochastic Bellman's 
equation as: 
 
 V(x, z) = max{F(x, u, z) +  Z V(x') Q(z, dz)}   (SBE) 
      u 
 
the entire term to the right is merely E[V(x)  z], the expected future x given that the present 
stochastic shock was z.  Note that it is not, like Sargent's, conditional on x.  This is because it 
is assumed in this notation that stochastic shocks z are distributed independently of x - or, 
rather, conditional only on the previous shock, z, whereas I suppose Sargent might allow a 
more general sort of transition.    Q(z, dz), thus, is merely the equivalent of the transition 
function for the random state variable.   
 
 
(B) Some Examples 
 
(i) Consumption with Uncertainty 
 
Consider the following standard stochastic consumption-savings model: 
 
 max E0[

t=0
  t U(ct)] 

 
  s.t. 
  xt+1 = Rt(xt - ct)  
  x0 given 
 
where Rt is a random variable governed by a one-period (or "first order") Markov process 
where prob{Rt  R* | Rt-1 = R} = F(R*, R).  Thus, the stochastic Bellman's equation is now: 
 
 V(xt, Rt-1) = max {U(ct) + E[V(xt+1, Rt)]} 
 
where the state is now the current state, xt and the previous random shock, Rt-1.  We keep 
track of time subcripts in this case because of the multiple periods involved.  We would like 
to define the control, in this case, as ut = xt - ct so that now ct =  xt - ut and the transition 
function is now xt+1 = Rtut.  Thus, plugging all this in: 
 
 V(xt, Rt-1) = max {U(xt - ut) + Et[V(Rtut, Rt)]} 
           ut 
 



 42

Thus, with ut as our control, the FOC is: 
 
 dV/dut = (dU/dct)(dct/dut) + Et[(dV/dxt+1)(dxt+1/dut)] = 0 
 
as dct/dut = -1 and dxt+1/dut = Rt, then this becomes: 
 
 (dU/dct) = RtEt[(dV/dxt+1)]      (FOC) 
 
Now, we have two states xt and Rt-1, however we only apply the Benveniste-Scheinkman 
condition to the non-stochastic term xt.  Thus: 
 
 dV/dxt = (dU/dct)(dct/dxt) 
 
or, as dc/dxt = 1, then: 
 
 dV/dxt = dU/dct      (BS) 
 
Thus, iterating this forward by one period: 
 
 dV/dxt+1 = dU/dct+1 
 
and plugging into the FOC: 
 
 dU/dct = RtEt[dU/dct+1]     (EE) 
 
which is our simple stochastic Euler Equation.    If we had specified this a little further, we 
could guess a policy function ut* = (xt, Rt-1) and then converted via ut* = xt - ct* the 
consumption policy function, ct* = h(xt, Rt-1) which we could plug in and verify. 
 
(ii) Asset Prices 
 
Consider the following version of the famous Lucas (1978) "asset pricing" model.   The set 
up is as follows: agents own "securities" or "trees" which yield a dividend per period of  dt.  
It is proposed that the  dividend stream {dt}t=0

 is stochastic, i.e. a Markov process where 
prob{dt+1  d  dt = d} = F(d, d).   Let st be the number of securities owned in period t 
which agents can buy and sell at price pt.   In fact, we can posit that in any period t, an agent 
sells his entire stock of securities, st and buys up a new stock of  securities, st+1.  Thus, a 
consumer thus gains "income" from the dividends yielded by amount of securities he has 
(dtst) and the selling of these securities (ptst) and he uses this income to purchase 
commodities (ct, which he consumes and whose price is 1) and a new set of securities (ptst+1).   
Prices move according to a law of motion pt = g(dt), so that prices are related to dividends.  
Thus, the problem is specified as:  
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 max E0[
t=0

  t U(ct)] 
 
  s.t. 
  ct + ptst+1  (pt + dt)st 
  pt = g(dt) 
  dt is governed by first order Markov process F(d, d) 
  s0 given 
 
Thus, we must now set up the Bellman's equation.  We must first specify the control 
variable: this can be either c (consumption) or s (future securities).  The states are more 
tricky.  We really have three of them - stock of securities entered in the period s, the divided 
d and the price p.  Thus, in general, we can think of the Bellman's equation as: 
 
 V(s, p, d) = maxc {U(c) +   V(s, p, d) dF(d, d)} 
 
thus, future earnings are random.   However, we shall make this more precise by recognizing 
that, by non-satiation, that  c + ps = (p+d)s.  Thus, c = (p + d)s - ps.  As p = g(d), then c = 
(g(d)+d)s - g(d)s.  Thus, letting s[g(d) + d] be the "state" and s the "control", then we have 
the stochastic Bellman's equation in the form: 
 
V(s[g(d) + d]) = max s {U[(g(d) + d)s - g(d)s] +   V(s[g(d) + d])dF(d, d)} (SBE) 
 
For shorthand, we shall occasionally use z = s[g(d) + d].  Now, the first order condition for a 
maximum is then: 
 
 dV/ds = (dU/dc)(dc/ds) + [(dV/dz)(dz/ds)]dF(d, d) = 0 
 
where, as dc/ds = - g(d) and dz/ds = (g(d) + d), the FOC becomes: 
 
 (dU/dc)g(d) = [(dV/dz)(g(d) + d)]dF(d, d)    (FOC) 
 
We must now derive the Benveniste-Scheinkman condition.  Namely: 
 
 dV/dz = (dU/dc)(dc/dz) 
 
or, as dc/dz = 1, then: 
 
 dV/dz = dU/dc      (BS) 
 
iterating one period forward: dV/dz = dU/dc, we can plug this into the FOC: 
 
 (dU/dc)g(d) = [(dU/dc)(g(d) + d)]dF(d, d)  
 
or, splitting up the terms under the  integral: 
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 (dU/dc)g(d) = [(dU/dc)g(d)]dF(d, d) + [(dU/dc)d]dF(d, d)  
 
defining w(d) = (dU/dc)g(d), then: 
 
 w(d) =  w(d) dF(d, d) + [(dU/dc)d]dF(d, d)  
 
Lucas imposes the equilibrium condition that s = s = 1, i.e. there is one security per 
"person".  This implies that in equilibrium, c = [g(d)- d]s - g(d)s = d.  Thus, dU/dc = dU/dd 
in equilibrium.  Conseuently: 
 
 w(d) =  w(d) dF(d, d) + [(dU/dd)d]dF(d, d)  
 
The process now involves around finding w(d).  Because w(d) = (dU/dc)g(d) and dU/dc is 
known, then once w(d) is determined, we can immediately compute g(d) = w(d)/(dU/dc).  
Thus, we must solve this equation for w(d).   Lucas (1978) does this with standard arguments 
on the boundedness and concavity of u(.), etc. to prove there is a unique solution to the 
Bellman's w(d).  As Sargent suggests, the resulting solution w(d) implies g(d) as a "fixed 
point".  But recall that g(d) is merely a price function.  This might be seen as a "rational 
expectations" equilibrium as the "fixed point of this mapping froma perceived pricing 
functions to actual pricing functions" (Sargent, 1987: p.100).  We suggest to examine 
Sargent (1987: Ch. 3) for further examples of asset pricing models.   
 
(iii) Search Models 
 
Consider the following search model for jobs.  Suppose an unemployed worker looking for a 
job gets a wage offer w drawn independently from a distribution F(W) = prob {w  W) with 
F(0) = 0, F(B) = 1 for some B < .  She can accept the offer, in which case she receives w 
per period forever or she can reject the offer - in which case she receives an unemployment 
compensation payment c for this period and a chance for another wage draw from the same 
distribution in the next period.  Let yt be the worker's income in a particular period t - which 
can either be, as we saw, c or w.  The worker seeks to maximize: 
 
 max E0[

t=0
  t U(yt)] 

 
For the sake of simplicity, let U(yt) = yt.  Thus, if the agent accepts a job, her gain is the 
entire intinite discounted utility stream, i.e. w/(1-).  If she rejects, she gets c and the chance 
of another draw from the distribution F(W).  Thus, state variable is the wage offer w, and the 
choice set in any period is the binary one of  "accept" or "reject" a wage offer.  In his 
appendix, Sargent proves that a Bellman's exists for this problem.  Consequently, the 
Bellman's equation can be written: 
 
 V(w) = max {w/(1-), c +  V(w)dF(w)}    (BE) 
 
where, note, V(w)dF(w) denotes the expected wage offer next period - suitably discounted 
by a single period.  Is there a solution V?  Sargent (1987: A.8) shows there is by checking 
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that an operator T can be defined so that TV(w) = max {w/(1-), c +  V(w) dF(w)} fulfills 
the Blackwell's sufficiency critieria and thus is a contraction mapping with a fixed point V(.). 
 
Having gotten that far, we now want to guess a form of solution to the Bellman's equation. 
Obviously, this problem seems to call for a reservation wage - wr - and this is indeed what 
we guess.  Namely, we propose that the solution to the value function will be such that the 
agent's strategy is to determine a reservation wr such that if w  wr, she will acccept, whereas 
if 0  w < wr, she will reject.  The reservation wage, then, is determined by the 
unemployment benefit payment c and the expectated future wage offer, i.e. wr/(1-) = c +  
V(w)dF(w).  us, we guess that the Bellman's equation has a solution of the form:  
 
      wr/(1-)  = c +  V(w)dF(w)  if 0 < w < wr 
 V(w) =     
      w/(1-)     if w  wr 
 
 
Note: this is a guess.  To see if it works, we must equate it.  Now, to get rid of the interior 
value function V(w) in the Bellman's, we must impose our structure upon the future draw w 
as well.  Thus, examine V(w). We should expect V(w) = wr/(1-) if w < wr and V(w) = 
w/(1-) if w   wr.  Consequently, we can propose that if wr is indeed the reservation wage, 
then the following holds true: 
 
 wr/(1-)  = c +  V(w)dF(w)   
 
or splitting integrals into two areas - from 0 to wr (where V(w) = wr/(1-)) and from wr to  
(where V(w) = w/(1-)): 
 
 wr/(1-) = c + 0wr wr/(1-) dF(w) + wr

 w/(1-) dF(w) 
 
Splitting the left hand side into two integrals over the same range: 
 
0wr wr/(1-) dF(w)  + wr

 wr/(1-) dF(w) = c + 0wr wr/(1-) dF(w) + wr
 w/(1-)dF(w) 

 
and then factoring out wr/(1-) from the interiors of the integrals (as wr is constant): 
 
wr/(1-)0wr dF(w)  +  wr/(1-) wr

 dF(w) = c + wr/(1-)  0wr dF(w) + wr
 w/(1-) 

dF(w) 
 
and bringing an integral on the right hand side to the left and from the left to the right so that 
therms with integrals over equivalent ranges are together: 
 
 (1-)wr/(1-)0wr dF(w)  = c  + wr

 w/(1-) dF(w) +  wr/(1-) wr
 dF(w) 

 
or: 
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 wr 0wr dF(w)  = c  + wr
 (w - wr)/(1-) dF(w) 

 
or adding wr wr

dF(w) to both sides: 
 
 wr   = c +  wr

 (w - wr)/(1-) dF(w) + wr wr
dF(w) 

 
or simply: 
 
 wr - c  =  [/(1-)] wr

 (w - wr) dF(w) 
 
where the left hand side is the marginal cost of rejecting an offer and searching one more 
time when an offer wr is on hand while the right hand side is the expected marginal benefit of 
searching one more time.  Sargent then defines the following function: 
 
 h(w) = [/(1-)] wr

 (w - wr) dF(w) 
 
which, as he shows, can determined wr.  How?  As wr is determined by the intersection of w-
c curve and the h(w) curve.  When w - c = h(r), then we have found the reservation wage. 
 
For more details, consult Sargent (1987, Ch.2). 
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(5) Mathematical Appendices 
 
(A) Principle of Optimality 
 
Richard Bellman's "Principle of Optimality" asserts that a solution to a standard 
intertemproal programming problem is equivalent to the solution obtained from Bellman's 
equation. To this end, we need to change our notation a bit to conform to Stokey and Lucas 
(1989: Ch. 4).   
 
Let x be a state variable and y a control variable. 
X  = set of admissable values of state variable x 
: X  X = correspondence describing feasible values for state variable next period, i.e. 
y  (x) is an admissable state variable in the future. 
A = {(x, y)  X  X | y  (x)} = graph of  
F: A  R = return function, F(x, y). 
0 <  < 1 = given discount factor 
(x0) = ({xt}t=0

 | xt+1  (xt)} is the set of feasible plans starting from x0. 
 
The principle of optimality then states the following.  Namely, for x = x0, the V(.) that solves 
the functional equation: 
 
 V(x) = maxy {F(x, y) + V(y)} s.t.  y  (x), for all x  X  (BE) 
 
 is the same as the V(.) that solves the intertemporal problem, i.e. 
 
   V(x0) = max t-0

t F(xt, xt+1)      (IP) 
   s.t. xt+1  (xt) 
         x0  X given 
 
where, note, yt = xt+1.   To this end we need the following sets of assumptions: 
 
Assumptions 
 
(A.1) Return functions are time autonomous, F(xt, xt+1) and not F(xt, xt+1, t). 
 
(A.2) (x) is non-empty for all x  X. 
 
(A.3) For all x0  X and {x}  (x0), limn t=0

n t F(xt, xt+1) exists (although it may be 
+ or -). 
 
The second assumption (A.2) guarantees that (x0) is non-empty.  (A.3) guarantees that any 
feasible plan can be valued by using the objective function (F(.)) and the discount rated .  
The following are sufficient conditions for (A.3): 
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Sufficiency 1: F is bounded above/below and 0 <  < 1. 
 
Sufficiency 2: for each x0  x and {x}  (x0), there exists   (0, 1/) and 0 < c <  such 
that F(xt, xt+1)  ct for all t. 
 
If (A.1)-(A.3) hold, then objective function in (IP) is well-defined, i.e. sup{x}  (x0) tF(xt, 
xt+1) exists for any x0.  We can define the supremum function V: X  R{} as: 
 
  V(x0) = sup{x}  (x0)tF(xt, xt+1) 
 
Is V unique?  The following assumptions are sufficient: 
 
(S.1) |V(x0)| < , then V(x0)  u({x}) for all {x}  (x0) and for any  > 0, there is a {x}  
(x0) such that V(x0)  u({x}) + . 
 
(S.2) if V(x0) = + , then there is a sequence {xk}  (x0) such that limk u({xk}) = + . 
(S.3) if V(x0) = - , then u({x}) = -  for all {x}  (x0). 
 
Theorem: (BE  IP)  
 
Proof: Let V(·) satisfy the intertemporal programming problem.   Suppose  > 0.  Suppose 
V(x0) is finite.  Then, V*(x0)   u(x) for all x  (x0) 
 
 
(B) Existence of Bellman's Equation 
 
Stokey and Lucas (1989: Ch. 4) go through the proof of the existence of a Bellman's 
equation in the case of bounded, continuous functions.  We here follow their Exercise 4.4 
(Stokey and Lucas, 1989: p.82-3) to illustrate this for bounded functions case where the state 
space X is finite or countable.   
 
Preliminaries: 
 
Let X = {x1, x2, ...} be a finite or countable set;  
let the correspondence : X  X be non-empty and finite-valued;  
let A = {(x, y)  X  X  y  (x)} (i.e. graph of  );  
let F: A  R be a bounded function; 
let 0 <  < 1; 
let B(X) be the set of bounded functions : X  R with sup norm, i.e. |||| = supxX |(x)| 
Define the operator T as (T)(x) = maxy(x) [F(x, y) + (y)].   
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Question (A): 
 
(A) Show the following:  

(i) T:  B(X)  B(X) 
(ii) T has a unique fixed point v  B(x) 
(iii) ||Tnv0 - v||  n||v0 - v||, n = 0, 1, 2, ... holds  for all v0  B(X) 
(iv) Optimal policy correspondence G:X  X defined as G(x) = {y  (x)  v(x) 
= F(x, y) + v(y)} is non-empty. 

 
 
Answers to (A):  
 
We first need the following two lemmas: 
 

Lemma 1: B(X) the set of bounded functions on a non-empty space X equipped 
with a sup norm is a normed vector space. 

 
Proof:  Let B(X) be the set of bounded functions on a non-empty set X (note: we do not 
require it to be compact or a topological space).   Let us equip it with the sup norm, so 
that: 
 
 |||| = supxX |(x)| 
 
As B(X) is the set of bounded functions, then there is an M > 0 such that |(x)|   M for 
all   B(X).  That it is a norm is easy to see: 
 
(i) |||| = supt |(t)|  0 with equality iff (t) = 0 for all t  [a, b];  
(ii) |||| = supt|(t)| = ||·[supt |(t)|] = ||·||||   
(iii) supt|(t)| + supt|g(t)|  supt|(t) + g(t)| by the properties of the sup operator, thus |||| 
+ ||g||   || + g||. 
 
Thus, B(X) with sup norm is a normed vector space. 
 

Lemma 2: B(X) equipped with a sup norm is a complete normed vector space (i.e. 
a Banach space). 

 
Proof:  We already know from Lemma 1 that B(X) is a normed vector space, so all that 
remains is completeness.  Thus, we must prove than any Cauchy sequence {n} in B(X) 
converges to a point in B(X).  Let us propose  as the candidate for such a point.  Now, 
as {n} is a Cauchy sequence, then for any  > 0, there is an N such that (n, m) <  for 
all n, m  N. For our metric, we take the sup norm, i.e. (n, m) = ||n - m|| = supxX 
|n(x) - m(x)|.   Thus, for any /2 > 0, there is an N such that supxX|n(x) - m(x)| < /2 
for all n, m  N.  
 



 50

Now, : X  R is a real-valued function so that n(x) is a real number for any x  X.  Let 
us fix x such that we obtain {n(x)} as a sequence of real numbers. Obviously, it must 
be that, by definition of the supremum and using the Cauchy criteria for the original 
sequence{n}: 
 
 |n(x) - m(x)|  supxX |n(x) - m(x)| < /2 
 
for all n, m  N.  This implies that {n(x)} is itself a Cauchy sequence in R.  Since R is 
complete, then n(x)  (x)  R.  Now, by the triangular inequality: 
 
 |n(x) - (x)|   |n(x) - m(x)| +  |m(x) - (x)|  
 
Consequently, by our earlier inequality: 
 
 |n(x) - (x)|   sup |n(x) - m(x)| +  |m(x) - (x)|  <  /2 + |m(x) - (x)| 
   
But, as we know, like our earlier {n(x)}, we can use the same Cauchy sequence in B(X) 
argument to show that {m(x)} is merely a sequence of numbers in R which converges to 
(x), i.e. for a given x  X and /2 > 0, there is an N such that for all m > N, |m(x) - 
(x)| < /2.  Thus /2  + |m(x) - (x)| < /2 + /2 =  for all m > N.  Consequently 
|n(x) - (x)| <    for all n  N.  As this true for all x  X, it will hold true for the x that 
yields the sup, i.e. supxX|n(x) - (x)| <  for all n  N.  As supxX|n(x) - (x)| = ||n - ||, 
then it must be that ||n - || <  for all n  N.  Thus, n  , i.e. {n} converges to a point 
.   
 
The only point that remains is to show that  is itself a bounded function, i.e.   B(X).     
Since ||n - || = supxX |n(x) - (x)| <  implies that  |n(x) - (x)| <  for all x, then   
(n(x) - , n (x) + ) for all x  X.  As all n are bounded and  is some number, then  is 
bounded, i.e.   B(X).  Thus, any Cauchy sequence {n} in B(X) converges to a point in 
B(X).  Thus the space B(X) is complete and thus, a Banach space. 
 
Let us now turn to the questions at hand: 
 
(i) T: B(X)  B(X). 
 
Proof: Recall that operator T is defined as (T)(x) = maxy(x) [F(x, y) + (y)].  Now, 
from Lemma 1, we know that B(X) is a normed vector space.  (.) is a bounded function 
on X, thus   B(X).  F(., .) is a bounded function on X  X, thus F(x, .) is a bounded 
function on X, or F(x, .)  B(X).  As B(X) is a vector space, this implies that for any   
(0, 1), we know that F(x, .) + (.)  B(X).   Now, as (x)  X is a finite-valued and 
non-empty set and F(x, .) + (.) is a bounded function over X and thus is bounded over 
(x) as well, then a supremum exists, i.e. there is a supy(x)[F(x, y) + (y)]. (Why?  
Define g = [F(x, .) + (.)] which is a bounded function over (x).  Suppose there is no 
supremum.  Then, there is an element y  (X) such that g(y) > m for any m  R.  This 
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contradicts the notion that g is bounded.  Thus, a supremum must exist).  Furthermore, as 
(x) is closed, then this supremum is a well-defined maximum, i.e. maxy(x)[F(x, y) + 
(y)] exists.  Define T(, x) = maxy(x)[F(x, y) + (y)] as, obviously, the maximum 
itself  is a function of the function   B(X) and variable x  X chosen.  Fixing , then 
T(, .) is a function over X alone, i.e. T(, .): X  R.  As F(. , .) + (.) is bounded over 
X  X, then F(., y*) + (y*) is bounded over X (where y* is the argmax of the function).   
Thus, as T(, .) = F(., y*) + (y*) then T(, .) is itself a bounded function on X, i.e. T(, 
.)  B(X).  As (T): X  R is merely another term for T(, .), then T  B(X).  Thus, as 
  B(X), and T  B(X), then T: B(X)  B(X).   
 
(ii) T has a unique fixed point v  B(x) 
 
Proof:   The simplest way to proceed would be to apply Blackwell's Sufficiency Criteria 
for a contraction mapping (Stokey and Lucas, 1992: p.54, Th.3.3).  This states, 
succinctly, that if the operator T: B(X)  B(X) satisfies monotonicity and discounting 
criteria, then T is a contraction mapping with modulus .    
 
(i) Monotonicity.  T is monotonic if for any , g  B(X) where (x)  g(x) for all x  X, 
then (T)(x)  (Tg)(x) for all x  X.  To see this, consider , g  B(X) where (x)  g(x) 
for all y  X.   Pick an arbitrary x  X, then  (T)(x) = supy(x)[F(x, y) + (y)] and 
(Tg)(x) = supy(x)[F(x, y) + g(y)].  Now, by the properties of the sup operator: 
 
 (T)(x) - (Tg)(x) = supy(x)[F(x, y) + (y)] - supy(x)[F(x, y) + g(y)] 
 
    supy(x)[F(x, y) + (y) - F(x, y) - g(y)]  
 
or simply: 
  
  (T)(x) - (Tg)(x)   supy(x)[(y) - g(y)]   0 
 
as, by hypothesis,   (0, 1) and (x)  g(x) for all x  X and y  (x)  X implies (y) 
 g(y) for all y  X.  Thus (T)(x)  (Tg)(x) for all y  X.  As x was chosen arbitrarily, 
then it is true for any x  X that if (x)  g(x) for all x  X, then (T)(x)  (Tg)(x) for all 
x  X.  Thus, T is monotonic. 
 
(ii) Discounting:  If discounting holds, then for all   B(X) and x  X and any   0 
there exists some   (0, 1) such that [T( + )](x)  (T)(x) + , where (+a)(x) = (x) 
+ a.  In our case: 
 
  (T)(x) = maxy(x)[F(x, y) + (y)]  
 
  = maxy(x)[F(x, y) + (y)] +  -   
 
  =  maxy(x)[F(x, y) + (y) + ] -   
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  = maxy(x)[F(x, y) + [(y) + ]] -  
 
  = [T( + )](x) -  
Thus: 
 (T)(x)  +  = [T( + )](x) 
 
thus discounting is satisfied.  
 
Consequently, by Blackwell's Sufficiency Criteria, T is a contraction mapping with 
modulus .  Now, Lemma 2 proves that B(X) is a complete normed vector space.  
Consequently, by the Contraction Mapping Theorem, T  has exactly one fixed point in 
B(X), i.e. there is a   B(X) such that T = .  Or, using the desired Stokey-Lucas 
notation, there is a v  B(x) such that Tv = v.  Thus, (ii) is satisfied. 
       
(iii) ||Tnv0 - v||  n||v0 - v||, n = 0, 1, 2, ... holds  for all v0  B(X) 
 
This is merely a restatement of the familiar contraction mapping theorem (Stokey and 
Lucas, 1992: p.50, Th. 3.2).  Namely, as T is a contraction mapping with modulus , over 
a complete metric space (B(X)) then for any v0  B(X), it must be that ||Tv0 - Tv||   ||v0 
- v||.  As v = Tv (fixed point), then ||Tv0 - v||   ||v0 - v||.  Thus iterating n times, then, 
||Tnv0 - v||  n||v0 - v||.  As this is true for any n = 0, 1, 2. ...., then we obtain: 
 
 ||Tnv0 - v||  n||v0 - v||, n = 0, 1, 2, ... holds  for all v0  B(X) 
 
with no further ado. 
 
(iv) Optimal policy correspondence G:X  X defined as G(x) = {y  (x)  v(x) = F(x, 
y) + v(y)} is non-empty. 
 
Proof: Let v be a fixed point of T.  Then (Tv)(x) = maxy(x) [F(x, y) + v(y)] = v(x), 
which exists and is attained. As (x) is non-empty, then for any x  X, there is a y  
(x) such that v(x) = maxy(x)[F(x, y) + v(y)].  Consequently, G(x) = {y  (x)  v(x) 
= F(x, y)|, is non-empty. 
 
Question (B):  
 
Let H be the set of functions h: X  X such that h(x) (x), all x  X, For any h  H, 
define the operator Th on B(X) by (Th)(x) + F[x, h(x)] + [h(x)].  Show that for any h 
 H, Th: B(X)  B(X) and Th as a unique fixed point w  B(X). 
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Answer to (B): 
 
Proof: Since h(x)  (x), then, by the definition of T, (T)(x)  (Th)(x) for each x  X.  
As shown earlier, (T) is bounded for all   B(X).  Thus, it must also be that (Th)  
B(X).  By simple extension of the argument in 4.4.a.(i), then Th itself is bounded, i.e. Th 
 B(X), so that Th:B(X)  B(X).   Finally, by a similar argument to the one outlined 
earlier in 4.4.a.(ii), we can show that Th satisfies Blackwell's Sufficiency Criteria for a 
contraction mapping with modulus  in a complete metric space B(X).  Consequently, Th 
has a unique fixed point, i.e. there is a w  B(X) such that Thw = w. 
 
Question (C): 
 
Let h0  H be given and consider the following algorithm. Given hn, let wn be the unique 
fixed point of Thn.  Given wn, choose hn+1 so that hn+1  argmaxyF(X)[F(x, y) + wn(y)]. 
Show that the sequence of functions {wn} converges to v, the unique fixed point of T. 
[Hint: Show that w0  Tw0  w1  Tw1  .... ] 
 
Answer to (C):  
 
Proof: Given the hint, we want to prove that wn+1  Twn  wn for all n.  Since wn is a 
fixed point of Thn, then wn = Thnwn, or, for any x X, wn(x) = F[x, hn(x)] + wn[hn(x)].  
As hn+1(x) = argmaxy(x)[F(x, y) + wn(y)], then Thn+1wn(x) = F(x, hn+1(x)) + 
wn[hn+1(x)] = maxy(x)[F(x, y) + wn(y)] = Twn(x).  Thus, (Thn+1wn)(x) = Twn(x)  
wn(x) for all x  X and all n, i.e. Thn+1wn = Twn  wn for all n. 
 
Now, we can see that Thn+1 is monotonic, i.e. we can show that if (x)  g(x) for all x  X, 
then (Thn+1)(x) = F(x, hn+1(x) + [hn+1(x)]   F[x, hn+1(x)] + g[hn+1(x)] = (Thn+1g)(x) in 
an analagous manner to the earlier proof.  Consequently, by monotonicity, T2

hn+1wn  
Thn+1wn  wn.  Or, in general, Tk

hn+1wn  Tk-1
hn+1wn  .... Thn+1wn = Twn   wn.  However, 

as we know that Thn+1 is a contraction mapping, then as k  , Tk
hn+1  wn+1, where 

wn+1 is a fixed point, i.e. wn+1 = Thn+1wn+1.  Thus, wn+1  Twn   wn for all n.   
 
Now, we want to proceed to the limit.  We have uncovered a non-decreasing, monotonic 
sequence, .. wn+1  Twn  wn...that is bounded above by v, the unique fixed point.  Thus, 
as n  , wn  v = Tv. 
 
 


